The Interplay between Transpiration and Runoff Formulations in Land Surface Schemes Used with Atmospheric Models

نویسندگان

  • RANDAL D. KOSTER
  • P. C. D. MILLY
چکیده

The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMs) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snowcover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM’s formulation of soil water balance dynamics: 1) the efficiency of the soil’s evaporation sink integrated over the active soil moisture range, and 2) the fraction of this range over which runoff is generated. Regardless of the LSM’s complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM’s simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Hydrology in Global Climate Models: How Good is It?

Land surface schemes are used in general circulation models (GCMs) to simulate the surface processes and the surface-atmosphere interactions. This paper addresses several aspects of land surface modelling from a hydrological perspective. It investigates the energy and water fluxes estimated by a typical land surface scheme (CSIRO9) for the Amazon and Mississippi River Basins, using river runoff...

متن کامل

The versatile integrator of surface atmospheric processes Part 2: evaluation of three topography-based runoff schemes

Three different schemes of topography-based runoff production [versatile integrator of surface atmospheric processes (VISA)-TOP1, VISA-TOP2, and VISA-TOP3] are described for a land-surface model (LSM) developed for use with a general circulation model (GCM). The schemes’ sensitivities to some key parameters are assessed for two catchments using data sets developed for the Project for Intercompa...

متن کامل

Comparing the scatter in PILPS off-line experiments with that in AMIP I coupled experiments

In PILPS off-line experiments, quite large discrepancies have been identified among the land-surface schemes in terms of the partitioning of available energy into sensible and latent heat fluxes and the partitioning of precipitation into evaporation and runoff plus drainage. In order to determine whether the extent of such differences found in off-line experiments is replicated in coupled exper...

متن کامل

Atmosphere-Land Coupled Data Assimilation by Using Satellite Microwave Radiometers

INTRODUCTION Soil moisture, snow and precipitation are key parameters in numerous environmental studies, including hydrology, meteorology, and agriculture. They play important roles in the interactions between the land surface and the atmosphere, as well as the partitioning of precipitation into runoff and ground water storage and absorbed solar energy into sensible and latent heat flues at the...

متن کامل

Importance of carbon dioxide physiological forcing to future climate change.

An increase in atmospheric carbon dioxide (CO(2)) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO(2) using the National Center for Atmospheric Res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996